la. Hasa is buying wooden tiles for all the downstairs rooms in her house.

The area of each tile is $1 \mathrm{~m}^{2}$.

Hafsa thinks that she needs 25 tiles. Is she correct? Explain your answer.

Not to scale
$2 a$. This rectangle has an area of $12 \mathrm{~cm}^{2}$. Find other possible lengths and widths which give the same area.

Find 2 possible answers.

Not to scale
Sa. Lucy has calculated the area of a rectangle.

Is Lucy correct? Prove it.

Not to scale
lb. Chuan is buying floor tiles for the school hall.

The area of each tile is $1 \mathrm{~m}^{2}$.

Churn thinks he needs to order 27 tiles. Is he correct? Explain your answer.
W

Not to scale
$2 b$. This rectangle has an area of $16 \mathrm{~cm}^{2}$. Find other possible lengths and widths which give the same area.

Find 2 possible answers.

Not to scale
3b. Can has estimated the area of a rectangle.

Is Can correct? Prove it.

4a. Mrs Kelly is buying łurf tiles for the playing field at school.

The area of each tile is $2 \mathbf{m}^{2}$.

Mrs Kelly thinks she needs to order 50 tiles.
Is she correct? Explain your answer.
Not to scale
5a. A rectangle has an area of $36 \mathrm{~cm}^{2}$. What could the dimensions be?

$$
\text { Area }=36 \mathrm{~cm}^{2}
$$

Find 3 possible answers.

Not to scale

6a. Sinead has estimated the area of a rectangle.

Is Sinead correct? Prove it.

4b. Ben is buying furf tiles for his garden.

The area of each tile is $3 \mathrm{~m}^{2}$.

Ben thinks he needs to order 9 tiles. Is he correct? Explain your answer.

Not to scale

5b. A rectangle has an area of $24 \mathrm{~cm}^{2}$. What could the dimensions be?

Find 3 possible answers.

Not to scale

6b. Josh has estimated the area of a rectangle.

Is Josh correct? Prove it.

Area of Rectangles

7a. Gabriel is creating a mosaic that has an area of approximately $600 \mathrm{~cm}^{2}$. He wants to use two different tiles.

10 cm
If he uses 10 of tile B, he thinks he will be able to use 3 tile A's in the remaining area.
Is he correct? Explain your answer.
GD

Not to scale
8a. Two rectangles have a combined area of approximately $10 \mathrm{~cm}^{2}$.

What could the dimensions of each rectangle be?

The rectangles have different areas. At least one rectangle has a side which is a decimal number.

Find 3 possible answers.

Not to scale

9a. Alice has made a large rectangle using multiples of the rectangles below.

Alice

Is Alice correct? Prove it.
Not to scale

7b. Isabel is creating a pattern that has an area of approximately $672 \mathrm{~cm}^{2}$. She wants to use two different tiles.

80mm

12 cm

If she uses 5 of tile A, she thinks she will be able to use 8 tile B's in the remaining area.
Is she correct? Explain your answer.
Not to scale
8b. Two rectangles have a combined area of approximately $\mathbf{2 5 m} \mathbf{m}^{\mathbf{2}}$.

What could the dimensions of each rectangle be?

The rectangles have different areas. At least one rectangle has a side which is a decimal number.

Find 3 possible answers.

Not to scale
9b. Johnny has made a large rectangle using multiples of the rectangles below.

Johnny

Is Johnny correct? Prove it.
Not to scale

Reasoning and Problem Solving Area of Rectangles

Reasoning and Problem Solving Area of Rectangles

Developing

1b. Chuan is incorrect because $3 \mathrm{~cm} x$ $10 \mathrm{~cm}=30 \mathrm{~cm}^{2}$ not $27 \mathrm{~cm}^{2}$ so 30 tiles are needed.
2b. Various answers, for example: $W=2 \mathrm{~cm}$ and $\mathrm{L}=8 \mathrm{~cm}, \mathrm{~W}=1 \mathrm{~cm}$ and $\mathrm{L}=16 \mathrm{~cm}$
3b. Cian is incorrect because he has miscounted the squares. The length is 10 cm not 9 cm and $2 \mathrm{~cm} \times 10 \mathrm{~cm}=20 \mathrm{~cm}^{2}$.

Expected

4b. Ben is incorrect because he has not accounted for when he rounded down for finding the area. He will need one extra tile to cover the 9 lots of 0.1 (0.9) that he has not accounted for. He needs 10 tiles. 5b. Various answers, for example: $2 \mathrm{~cm} \times 12 \mathrm{~cm}, 3 \mathrm{~cm} \times 8 \mathrm{~cm}, 6 \mathrm{~cm} \times 4 \mathrm{~cm}$ 6b. Josh is correct because he has rounded the decimal numbers correctly to help him find the area and completed $4 \mathrm{~cm} \times 6 \mathrm{~cm}$ which is $24 \mathrm{~cm}^{2}$.

Greater Depth

7b. Isabel is incorrect because 5 tile A's has an area of $240 \mathrm{~cm}^{2}$. There will be a remaining area of $432 \mathrm{~cm}^{2}$ which is 6 tile B's.
8b. Various answers, for example:
A. $5 \mathrm{~m} \times 4 \mathrm{~m}$ B. $10 \mathrm{~m} \times 0.5 \mathrm{~m}$
A. $40 \mathrm{~m} \times 0.5 \mathrm{~m}$ B. $5 \mathrm{~m} \times 1 \mathrm{~m}$
A. $20 \mathrm{~m} \times 1 \mathrm{~m}$ B. $2.5 \mathrm{~m} \times 2 \mathrm{~m}$

9b. Johnny is correct. 7 A's and 2 B's create an approximate area of $128 \mathrm{~cm}^{2}$.

