Reasoning and Problem Solving Step 9: Angles in Polygons

National Curriculum Objectives:

Mathematics Year 6 (6G2a) Compare and classify geometric shapes based on their properties and sizes
Mathematics Year 6: (6G4a) Find unknown angles in any triangles, quadrilaterals and regular polygons
Mathematics Year 6: (6G4b) Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Identify if a given answer is true or false, using understanding of how a quadrilateral can be split into triangles to work out the sum of the interior angles. Expected Identify if a given answer is true or false, using understanding of how a polygon can be split into triangles to work out the sum of the interior angles.
Greater Depth Identify if a given answer is true or false, using understanding of how a polygon can be split into triangles to work out the sum of the interior angles. Explore more than one possibility.

Questions 2, 5 and 8 (Problem solving)
Developing Recognise relationships between the number of sides of a polygon and the number of triangles it can be split into. Calculate the sum of the interior angles of more than one shape (triangles and quadrilaterals.)
Expected Recognise relationships between the number of sides of a polygon and the sum of the interior angles. Calculate the sum of the interior angles of more than one shape. Greater Depth Recognise relationships between the number of sides of a polygon and individual interior angles. Use understanding of interior angles to find the sum of angles in more than one shape.

Questions 3, 6 and 9 (Reasoning)
Developing Prove how many triangles a polygon can be split into (quadrilateral or pentagon.)
Expected Prove that the sum of the interior angles of a given polygon will always be the same.
Greater Depth Prove that the sum of the exterior angles of any given polygon will always be the same and that vertically opposite angles will always be equal.

More Year 6 Properties of Shapes resources.

Did you like this resource? Don't forget to review it on our website.

Angles in Polygons

Angles in Polygons
la．The sum of the angles in a square is equal to the sum of the angles in 3 triangles，which is 540° ．
I think this is false beca
a square can only be
into 2 triangles，so the
of the angles would
360° ．

Use this table to work out how many triangles a hexagon can be split into．

Ba．A quadrilateral can only ever be split into two triangles，so the sum of the interior angles of any quadrilateral will always equal 360° ．

Convince me that it is true

lb．The sum of the angles in a shape is 360° ．The shape will always be a square．

I think this is true because the interior angles in a square total 360° ．

Is Craig correct？Explain your answer．合
Db．The sum of interior angles of a triangle is 180° and the sum of the interior angles of a quadrilateral is 360° ．What would the total sum of the interior angles be for the 5 polygons you can see below？

靣

3b．A pentagon can only ever be split into three triangles，so the sum of the interior angles of any pentagon will always equal 540° ．

Convince me that it is true

Angles in Polygons

Angles in Polygons

4a. The sum of the angles in a pentagon is equal to the sum of the angles in 5 triangles, which is 900°.

I think this is true because a pentagon has 5 sides and 5 angles so it must have 5 triangles.

4b. The sum of the angles in a shape is greater than 540° but less than 900°. The shape can only be a hexagon.

I think this is false because the sum of a pentagon's interior angles is 540°, so the shape could also be a pentagon.

Kara

Is Kara correct? Explain your answer.

5b. What would the total sum of the interior angles be for the 5 polygons you can see?
 interior angles in a dodecagon.

6a. The sum of the interior angles of any pentagon will always equal 540°.

Convince me that it is true.

Angles in Polygons

Angles in Polygons

7a. There are four possible shapes which have interior angles totalling between 300° and 1000°.

Michaela
Is Michaela correct? Help her explain by presenting the information in a table.

8a. Look at the table below.

Number of sides	Number of triangles	Size of interior angle
4	2	90°
5	3	108°
6	4	120°
8	6	135°

Use this table to work out the size of one interior angle in a dodecagon.

9a. The sum of the exterior angles of any polygon will always equal 360°.

Convince me that this is true.

7b. There are two possible shapes which have interior angles totalling between 1000° and 1500°.

I think this is true but I'm not sure why.

Zak
Is Zak correct? Help him explain by presenting the information in a table.

8b. Use your knowledge of interior angles to work out the total sum of all the angles labelled a.

a

9b. Vertically opposite angles will always be equal.

Convince me that this is true.

Reasoning and Problem Solving Angles in Polygons

Reasoning and Problem Solving Angles in Polygons

Developing

1b. Craig is incorrect. Even though the sum of the interior angles of a square is 360°, this also applies to any other quadrilateral.
2b. There are 4 triangles and 1
quadrilateral. $180^{\circ} \times 4=720^{\circ} .720^{\circ}+360^{\circ}=$ 1080°. The sum of all of the interior angles would be 1080°.
3b.

Children may demonstrate using a variety of pentagons.

Expected

4b. Kara is incorrect. The statement asks for interior angles with sums which are greater than 540°. The sum of an pentagon's interior angles is equal to 540°. 5b. There are 4 hexagons and one quadrilateral. The sum of the interior angles for a hexagon is $4 \times 180^{\circ}=720^{\circ}$. The sum of the interior angles in a quadrilateral is 360°.
$\left(4 \times 720^{\circ}\right)+360^{\circ}=3240^{\circ}$.
6 b.

$180^{\circ} \times 6=1080^{\circ}$.
Children may demonstrate using a variety of regular and irregular octagons.

Greater Depth

7b. Zak is incorrect. There are 3 possible shapes which have interior angles totalling between 1000° and 1500°. Children may present their answer in a table which could look like this:

Reasoning and Problem Solving Angles in Polygons

Number of Sides	Number of triangles	Sum of interior angles
4	2	360°
5	3	540°
6	4	720°
7	5	900°

8a. Children should look at the relationship between the number of sides and triangles and use this to calculate the sum of the interior angles of a dodecagon. Sum of angles in a dodecagon: $10 \times 180^{\circ}$ $=1800^{\circ}$. Interior angle of a dodecagon: $1800^{\circ} \div 12=150^{\circ}$.
9a. Children will demonstrate their reasoning and proof through diagrams and use of calculations or a protractor. They may make the connection that the exterior angles follow a route around the outside of the shape and that all of the way around the shape is a full turn, which equals 360°.

Reasoning and Problem Solving

 Angles in Polygons| Number of
 Sides | Number of
 triangles | Sum of
 interior
 angles |
| :---: | :---: | :---: |
| 8 | 6 | 1080° |
| 9 | 7 | 1260° |
| 10 | 8 | 1440° |

8b. An interior angle of a regular pentagon are 108°. There are 3 of these angles joined at a point. $108^{\circ} \times 3=324^{\circ}$. Angle $a=360^{\circ}-324^{\circ}=36^{\circ}$. Angle $a \times 5=$ $36^{\circ} \times 5=180^{\circ}$.
9 b . Children will demonstrate their reasoning and proof through diagrams and use of calculations or a protractor.

