1) The abacus shows a decimal number the starting number. Follow the maze, answering each question as you go.
$\begin{array}{llll}0 & \frac{1}{10} & \frac{1}{100} & \frac{1}{1000}\end{array}$

Starting number:	a) Add 2 hundredths more.	b) Add 4 tenths.
e) What do I need to add to make each digit after the decimal point 9?	d) Add 0.301 more.	c) Add 0.004 more.
\qquad		\leftarrow

2) Answer these calculations using mental methods and jottings. You could use a hundred square, representing a whole, to help you.
a) $0.32+0.07=$
b) $0.06+0.52=$
c) $0.5+0.16=$
d) $0.6+0.02=$

3) Try these calculations, selecting an appropriate method.
a) $0.321+0.504=$
b) $0.065+0.756=$
c) $0.208+0.064=$
4) $0.54+0.3 \mathrm{~A}=0.8 \mathrm{~B}$
a) What is the greatest value that A can be? Explain your answer.

b) What calculation would this give?
5) Is this statement always, sometimes or never true? Explain your thinking.

To add decimals, you need to use the column method.

1) The abacus shows a decimal number the starting number. Follow the maze, answering each question as you go.

2) Answer these calculations using mental methods and jottings. You could use a hundred square, representing a whole, to help you.
a) $0.32+0.07=$
b) $0.06+0.52=$
c) $0.5+0.16=$
d) $0.6+0.02=$

3) Try these calculations, selecting an appropriate method.
a) $0.321+0.504=$
b) $0.065+0.756=$
c) $0.208+0.064=$
4) $0.54+0.3 \mathrm{~A}=0.8 \mathrm{~B}$
a) What is the greatest value that A can be? Explain your answer.
b) What calculation would this give?
5) Is this statement always, sometimes or never true? Explain your thinking.

To add decimals, you need to use the column method.

1) Using any digit 1-9 only once in each calculation, find 4 possible solutions.

	0	0	$?$	
	0	0	$?$	$?$
+	0	0	$?$	$?$
	0	0	$?$	$?$

2) You can use the digits 1-9 only once in the calculation but digits can be repeated in the answer. What is the greatest possible total?
3) Again, you can use the digits $1-9$ only once in the calculation but digits can be repeated in the answer. What is the smallest possible total?

1) Using any digit 1-9 only once in each calculation, find 4 possible solutions. (Digits can be repeated in the answer.)

	0	0	$?$	
	0	0	$?$	$?$
+	0	0	$?$	$?$
	0	0	$?$	$?$

2) You can use the digits 1-9 only once in the calculation but digits can be repeated in the answer. What is the greatest possible total?
3) Again, you can use the digits 1-9 only once in the calculation but digits can be repeated in the answer. What is the smallest possible total?

