<u>Reasoning and Problem Solving</u> <u>Step 7: Angles in a Triangle – Missing Angles</u>

National Curriculum Objectives:

Mathematics Year 6: (6G4b) <u>Recognise angles where they meet at a point, are on a</u> straight line, or are vertically opposite, and find missing angles

Differentiation:

Questions 1, 4 and 7 (Reasoning)

Developing Explain how it's possible to find missing angles using knowledge of angles in a triangle and angles on a straight line. Includes angles measured to the nearest ten degrees.

Expected Explain how it's possible to find missing angles using knowledge of angles in a triangle, angles on a straight line and angles around a complete rotation. Includes angles measured to the nearest 5 degrees.

Greater Depth Explain how it's possible to find missing angles using knowledge of angles in a triangle, angles on a straight line, vertically opposite angles and angles around a complete rotation. Includes angles measured to the nearest whole degree.

Questions 2, 5 and 8 (Reasoning)

Developing Explain who has calculated the missing angle correctly using knowledge of angles in a triangle and angles on a straight line. Includes angles measured to the nearest ten degrees.

Expected Explain who has calculated the missing angle correctly using knowledge of angles in a triangle, angles on a straight line and vertically opposite angles. Includes angles measured to the nearest five degrees.

Greater Depth Explain who has calculated the missing angle correctly using knowledge of angles in a triangle, angles on a straight line, vertically opposite angles and angled around a complete rotation. Includes angles measured to the nearest whole degree.

Questions 3, 6 and 9 (Problem Solving)

Developing Find 1 incorrect angle and fix the mistake. Includes angles measured to the nearest ten degrees.

Expected Find 1 incorrect angle and fix the mistake. Includes angles measured to the nearest five degrees.

Greater Depth Find 2 incorrect angles and fix the mistakes. Includes angles measured to the nearest whole degree.

More <u>Year 6 Properties of Shapes</u> resources.

Did you like this resource? Don't forget to <u>review</u> it on our website.

classroomsecrets.co.uk

© Classroom Secrets Limited 2019 Reasoning and Problem Solving – Angles in a Triangle – Missing Angles – Teaching Information Angles in a Triangle – Missing Angles Angles in a Triangle – Missing Angles

Reasoning and Problem Solving – Angles in a Triangle – Missing Angles – Year 6 Developing

Angles in a Triangle – Missing Angles Angles in a Triangle – Missing Angles

Reasoning and Problem Solving – Angles in a Triangle – Missing Angles – Year 6 Expected

Angles in a Triangle – Missing Angles Angles in a Triangle – Missing Angles

Reasoning and Problem Solving – Angles in a Triangle – Missing Angles – Year 6 Greater Depth

<u>Reasoning and Problem Solving</u> Angles in a Triangle – Missing Angles

Developing

1a. Kelly is wrong as a = 40° and b = 140°. Angle a is calculated by knowing that angles in a triangle total 180° . Angle b is calculated by knowing that angles on a straight line total 180° . $(180^\circ - 40^\circ = 140^\circ)$. 2a. Oscar is correct. If he calculated the angle of the straight line fist $(180^\circ - 100^\circ =$ $80^\circ)$ he can then add the two angles in the triangle $(30^\circ + 80^\circ = 110^\circ)$ and subtract that answer from 180° to give him 70° . 3a. 100° should be 110° .

Expected

4a. Rosie is wrong as a = 35° , b = 280° , c = 45° and d = 135° . Angles a and c can be calculated using knowledge that angles in a triangle total 180° . Angle b can be calculated once angle a is known and using knowledge that the angle of a complete circle is 360° . Angle d can be calculated using knowledge that the angle of a complete circle is 360° . Angle d can be calculated using knowledge that the angle of a straight line is 180° . 5a. Chrissy is correct. Using knowledge that the angle of a straight line is 180° , it is possible to calculate all of the angles in the triangle. Then, it is possible to calculate $180^{\circ} - 60^{\circ} = 120^{\circ}$. 6a. 285° should be 295° .

Greater Depth

7a. Rob is wrong as a = 16°, b = 75°, c = 89° and d = 33°. The angles can be calculated using knowledge of the angle of a straight line, angles in a triangle and vertically opposite angles. 8a. Alex is correct. He needed to calculate the angles of a straight line first (98° + 73° = 135°, 180° - 135° = 45° and180° - 126° = 54°). He can then calculate the missing angle in the triangle as 89°. 180° - 89° = 91°, 91° + 45° = 136°, 180° -136° = 44°.9a. Both 121° should be 131°.

<u>Reasoning and Problem Solving</u> <u>Angles in a Triangle – Missing Angles</u>

Developing

1b. Matt is correct as $a = 80^{\circ}$, $b = 70^{\circ}$ and $c = 110^{\circ}$. Angles b and c can be calculated by understanding that angles in a triangle total 180° . Angle a can be calculated by working out $70^{\circ} + 30^{\circ} = 100^{\circ}$, then $180^{\circ} - 100^{\circ} = 80^{\circ}$. 2b. Ellie is correct. The missing angle inside the triangle is 80° ($60^{\circ} + 40^{\circ} + 80^{\circ} = 180^{\circ}$). The angle of a straight line is 180° , so $180^{\circ} - 80^{\circ} = 100^{\circ}$. 3b. 60° should be 70° .

Expected

4b. Stan is correct as $a = 75^{\circ}$, $b = 35^{\circ}$, $c = 70^{\circ}$, $d = 70^{\circ}$ and $e = 110^{\circ}$. Angles b and e can be calculated using knowledge that angles in a triangle total 180°. Angles a and c can be calculated using knowledge that the angle of a straight line is 180°.

5b. Mary is correct. She has used her knowledge of vertically opposite angles.
6b. 145° should be 140°.

Greater Depth

7b. Balvinder is correct as a = 128° , b = 102° , c = 306° and d = 106° . The angles can be calculated using knowledge of the angles on a straight line, angles in a triangle, angles around a complete rotation and vertically opposite angles. 8b. Sid is correct. He needed to calculate $180^{\circ} - 89^{\circ} = 91^{\circ} + 53^{\circ} = 144^{\circ}$. then $180^{\circ} - 144^{\circ} = 36^{\circ}$. Angle c can then be calculated as 36° using knowledge of vertically opposite angles. 9b. 138° should be 139° and 124° should be 134° .

classroomsecrets.co.uk

Reasoning and Problem Solving – Angles in a Triangle – Missing Angles ANSWERS

CLASSROOM Secrets