Step 6: Angles in a Triangle 2

National Curriculum Objectives:

Mathematics Year 4: (4F8) Compare numbers with the same number of decimal places up to two decimal places
Mathematics Year 4: (4F10b) Solve simple measure and money problems involving fractions and decimals to two decimal places

Differentiation:

Questions 1,4 and 7 (Varied Fluency)
Developing Calculating missing angles when finding one missing angle (where all angles are multiples of 10) in isosceles and right-angled triangles.
Expected Calculating missing angles when finding two missing angles in isosceles and right-angled triangles (when angles are in multiples of 5).
Greater Depth Calculating missing angles when finding two missing angles in isosceles and right-angled triangles (when angles are given in exact degrees).

Questions 2, 5 and 8 (Varied Fluency)
Developing Decide whether a statement is true or false when finding one missing angle (where all angles are multiples of 10) in isosceles and right-angled triangles.
Expected Decide whether a statement is true or false when finding two missing angles in isosceles and right-angled triangles (when angles are in multiples of 5).
Greater Depth Decide whether a statement is true or false when finding two missing angle in isosceles and right-angled triangles (when angles are given in exact degrees).

Questions 3, 6 and 9 (Problem Solving and Reasoning)
Developing Decide which statement is correct and explain why when finding one missing angle (where all angles are multiples of 10) in isosceles and right-angled triangles. Expected Decide which statement is correct and explain why when finding two missing angles in isosceles and right-angled triangles (when angles are in multiples of 5).
Greater Depth Decide which statement is correct and explain why when finding two missing angle in isosceles and right-angled triangles (when angles are given in exact degrees).

More Year 6 Properties of Shapes resources.

Did you like this resource? Don't forget to review it on our website.

Angles in a Triangle 2

1. Match each triangle to its missing angle.

70°

50°

Triangles not drawn to scale.
2. True or false? The missing angles in the triangles below are all equal.
A.
B.
C.

Triangles not drawn to scale.
3. Hafsa and Chuan are calculating angles in the triangle below.

Who is correct?
Explain how you know.

Hafsa

The missing angle is 60°.

Angles in a Triangle 2

4. Match each triangle to its missing angle.

65°
55°

Triangles not drawn to scale.
5. True or false? The missing angles in the triangles below are all equal.
A.

B.
C.

Triangles not drawn to scale.
6. Steph and Sean are calculating angles in the triangle below.

Who is correct?
Explain how you know.

Sean

The missing angle is 55°.

The missing angle is 75°.

Angles in a Triangle 2

7. Match each triangle to its missing angle.

56°
62°
54°

Triangles not drawn to scale.
8. True or false? The missing angles in the triangles below are all equal.
A.

B.
C.

Triangles not drawn to scale.
9. Alice and Johnny are calculating angles in the triangle below.

Who is correct?
Explain how you know.

Alice
 could be 49° and 41°.

Homework/Extension

Angles in a Triangle 2

Developing

1. $A=80^{\circ}, B=70^{\circ}, C=50^{\circ}$
2. False. A and $C=70^{\circ}, B=80^{\circ}$
3. Hafsa is correct. The angles would add up to 210° in Chuan's triangle.

Expected

4. $A=65^{\circ}, B=65^{\circ}, C=70^{\circ}$
5. False. A and $B=70^{\circ}, C=65^{\circ}$
6. Sean is correct. The angles would add up to 140° in Steph's triangle.

Greater Depth

7. $A=62^{\circ}, B=54^{\circ}, C=56^{\circ}$
8. True. A, B and C $=48^{\circ}$
9. They are both correct. Both options would mean the angles add up to 180°
