1) a) $4 \times 2=8 \mathrm{~cm}^{2}$
b) $5 \times 3=15 \mathrm{~cm}^{2}$
2) a) $14 \mathrm{~cm} \times 6 \mathrm{~cm}=84 \mathrm{~cm}^{2}$
b) $7 \mathrm{~cm} \times 5 \mathrm{~cm}=35 \mathrm{~cm}^{2}$
3) a) 80 mm
b) 7 cm
4) Ania is incorrect. Using the formula base \times perpendicular height to calculate the area of both the rectangle and the parallelogram will show Ania that both shapes actually have the same area of $32 \mathrm{~cm}^{2}$.
5) No. Although Hamish has correctly calculated that the first parallelogram has an area of $42 \mathrm{~cm}^{2}$, in the second parallelogram he has multiplied the base by a side length, rather than the perpendicular height.
The correct area of the second parallelogram is $7 \mathrm{~cm} \times 5 \mathrm{~cm}=35 \mathrm{~cm}^{2}$ so both of these parallelograms do not have an area of $42 \mathrm{~cm}^{2}$.
6) The parallelogram has an area of $84 \mathrm{~cm}^{2}$ so it could have the following dimensions:
base $=b$ and height $=h$
$b=3 \mathrm{~cm}$ and $h=28 \mathrm{~cm}$
$b=4 \mathrm{~cm}$ and $h=21 \mathrm{~cm}$
$b=6 \mathrm{~cm}$ and $h=14 \mathrm{~cm}$
$b=7 \mathrm{~cm}$ and $h=12 \mathrm{~cm}$
a) Each tile has an area of $240 \mathrm{~cm}^{2}$.
$4800 \div 240=20$
DIY Dan needs 20 tiles for this wall.
b) $£ 175 \div £ 3.50=50$

Dan used 50 more tiles to decorate the rest of his bathroom.

