Area of a Triangle 1

Area of a Triangle 1

1a．Here are two triangles．Each square equals $1 \mathrm{~cm}^{2}$ ．

A．						B．					

Create a question about the area of the triangles．Remember to include the answer．
風
Not to scale
2a．Ben has estimated the area of these triangles by counting the squares．

1 square $=1 \mathrm{~cm}^{2}$

Do you agree with his estimations？ Explain why．

Not to scale
3a．Kelly is drawing a right－angled triangle．

She says，

Use squared paper to draw a triangle with the same area as Kelly＇s．
吅

1b．Here are łwo triangles．Each square equals $1 \mathrm{~cm}^{2}$ ．

Create a question about the area of the triangles．Remember to include the answer．

吅
Not to scale
2b．Sadia has estimated the area of these triangles by counting the squares．

1 square $=1 \mathrm{~cm}^{2}$

$\mathrm{A}=4 \mathrm{~cm}^{2}$
B．

$B=10 \mathrm{~cm}^{2}$

Do you agree with her estimations？ Explain why．

Not to scale
3b．Harry is drawing a right－angled triangle．

He says，
My triangle has an area of $6 \mathrm{~cm}^{2}$ ．

Use squared paper to draw a triangle with the same area as Harry＇s．
问

Area of a Triangle 1

4a. Here are three triangles. Each square equals $1 \mathrm{~cm}^{2}$.

Create three questions about the area of the triangles. Remember to include answers.

Not to scale
5a. Jude has estimated the area of these triangles by counting the squares.

1 square $=1 \mathrm{~cm}^{2}$

A.				

B.

$A=10 \mathrm{~cm}^{2}$
$\mathrm{B}=4.5 \mathrm{~cm}^{2}$
$\mathrm{C}=6 \mathrm{~cm}^{2}$

Do you agree with his estimations? Explain why.
6a. Adela is drawing a triangle.

She says,

Use squared paper to draw triangles with the same area as Adela's.

4b. Here are three triangles. Each square equals $1 \mathrm{~cm}^{2}$.

A.	B.	B.						C.			

Create three questions about the area of the triangles. Remember to include answers.

Not to scale
5b. Ellie has estimated the area of these triangles by counting the squares.

1 square $=1 \mathrm{~cm}^{2}$

B.

$\mathrm{A}=6.5 \mathrm{~cm}^{2}$
$\mathrm{B}=4.5 \mathrm{~cm}^{2}$
$\mathrm{C}=3 \mathrm{~cm}^{2}$

Do you agree with her estimations? Explain why.

Not to scale
6b. Imran is drawing a triangle.

He says,
My triangle has an area of $16 \mathrm{~cm}^{2}$.

Use squared paper to draw triangles with the same area as Imran's.

7a. Use squared paper to draw 3 triangles which each have a different area.

Imagine each square is worth $\mathbf{2 c m} \mathbf{2}^{2}$.
Create three questions about the area of the triangles.

Remember to include answers.

8a. Ali has estimated the area of these triangles by counting the squares.

1 square $=3 \mathrm{~cm}^{2}$

Do you agree with his estimations? Explain why.

Gop

9a. Bella is drawing a triangle.

She says,

Use squared paper to draw triangles with the same properties as Bella's. Imagine each square is worth $2 \mathrm{~cm}^{2}$.

7b. Use squared paper to draw 3 triangles where 2 have the same area.

Imagine each square is worth $3 \mathrm{~cm}^{2}$.
Create three questions about the area of the triangles.

Remember to include answers.

8b. Lily has estimated the area of these triangles by counting the squares.

1 square $=2 \mathbf{c m}^{2}$

Do you agree with her estimations? Explain why.

GD

Not to scale
9b. Alfie is drawing a triangle.

He says,

> My triangle has an area of $30 \mathrm{~cm}^{2}$. One of its sides is 15 cm long.

Use squared paper to draw triangles with the same properties as Alfie's. Imagine each square is worth $3 \mathrm{~cm}^{2}$.

Reasoning and Problem Solving
Area of a Triangle 1

Developing

1a. Various answers, for example:
Which triangle has the smallest area? (A)
2a. Various answers, for example:
No because although he has estimated triangle B correctly, he has only counted one square for triangle A , despite there being more than 1.
3a. Accept any right-angled triangle, with an accurate area of $4 \mathrm{~cm}^{2}$.

Expected

4a. Various answers, for example:
Which triangle has the largest area? (A);
Order the triangles from the smallest area to the largest. (C, B, A); What similarities and differences do you notice about the triangles? (B and C are right-angled triangles, A is an isosceles triangle)
$5 a$. Various answers, for example:
No because although he has estimated triangle A and B correctly, his estimation for triangle C is too low; it has an area closer to $8 \mathrm{~cm}^{2}$, not $6 \mathrm{~cm}^{2}$.
6a. Accept any triangles with an accurate area of $12 \mathrm{~cm}^{2}$.

Greater Depth

7a. All triangles must have a different area. Three questions with an answer.
8a. Various answers, for example:
No because he has not multiplied the total squares by 3 ; they need to be multiplied because each square is worth $3 \mathrm{~cm}^{2}$, not $1 \mathrm{~cm}^{2}$. His estimations should be: $A=18 \mathrm{~cm}^{2}, B=12 \mathrm{~cm}^{2}, C=22.5 \mathrm{~cm}^{2}$.
9a. Accept any triangles with at least one side which is 12 cm long, and an accurate area of $12 \mathrm{~cm}^{2}$ (where each square represents $2 \mathrm{~cm}^{2}$).

Reasoning and Problem Solving Area of a Triangle 1

Developing

1b. Various answers, for example:
What is the difference between the area of the triangles? ($4.5 \mathrm{~cm}^{2}$)
2b. Various answers, for example:
No because although she has estimated triangle A correctly, her estimation for triangle B is too high; it has an area closer to $8 \mathrm{~cm}^{2}$, not $10 \mathrm{~cm}^{2}$.
3b. Accept any right-angled triangle, with an accurate area of $6 \mathrm{~cm}^{2}$.

Expected

4b. Various answers, for example:
Which triangle has an area of $4.5 \mathrm{~cm}^{2}$? (C);
What is the difference in area between triangle A and triangle B ? ($6 \mathrm{~cm}^{2}$); What is the total area of all three triangles?
($18.5 \mathrm{~cm}^{2}$)
5b. Various answers, for example:
I agree with Ellie's estimations because all of her estimations are either correct, or close to being correct; triangle A has an actual area of $6 \mathrm{~cm}^{2}$, so her estimation is only $0.5 \mathrm{~cm}^{2}$ over.
6b. Accept any triangles with an accurate area of $16 \mathrm{~cm}^{2}$.

Greater Depth

7b. All triangles must have a different area. Three questions with an answer. 8b. Various answers, for example: Nom because she has multiplied the total squares by 3 instead of 2 ; each square is worth $2 \mathrm{~cm}^{2}$, not $3 \mathrm{~cm}^{2}$. Her estimations should be: $\mathrm{A}=9 \mathrm{~cm}^{2}, \mathrm{~B}=12 \mathrm{~cm}^{2}, \mathrm{C}=3 \mathrm{~cm}^{2}$. 9 b . Accept any triangles with at least one side which is 15 cm long, and an accurate area of $30 \mathrm{~cm}^{2}$ (where each square represents $3 \mathrm{~cm}^{2}$).

