1) a) The area of triangle C is not a whole number $\left(12.5 \mathrm{~cm}^{2}\right)$.
b) Triangle A has an area of $8 \mathrm{~cm}^{2}$. Triangle B has an area of $9 \mathrm{~cm}^{2}$.
2) For triangle A, accept estimates of approximately $12 \mathrm{~cm}^{2}$.

For triangle B, accept estimates of approximately $18 \mathrm{~cm}^{2}$.
For triangle C, accept estimates of approximately $12 \mathrm{~cm}^{2}$.
3) a) Both possible diagonal lines are shown:

b) $8 \mathrm{~cm}^{2}$
c) The triangles each have an area that is half of the area of the whole square $\left(16 \mathrm{~cm}^{2}\right)$.

1) Grace is correct in her thinking. When the two triangles are placed together, this creates a rectangle. If we find the area of the rectangle then halve it, we will have the area of one triangle.

Children should have drawn a rectangle made up of the two triangles, for example:

2) a) Aman has counted only the whole squares and has not included the part squares.
b) Aman has counted all the part squares as whole $1 \mathrm{~cm}^{2}$ squares.

1) The total area remaining is $48.5 \mathrm{~cm}^{2}$.
2) Sadie could have drawn a right-angled triangle in which the two shortest sides measure 3 cm and 6 cm .
$3+6=9 \mathrm{~cm}$
The area of this triangle is $9 \mathrm{~cm}^{2}$.

She could also have drawn a right-angled triangle in which the two shortest sides both measure 4 cm .
$4+4=8 \mathrm{~cm}$
The area of this triangle is $8 \mathrm{~cm}^{2}$.

