1) a) The correct representation for $2 x+3=9$ is:

The other representations show the following equations.

2)

$$
\begin{array}{ll}
x=4 & < \\
x=5 & y=6 \\
x=10 & y=5 \\
x=> & y=5
\end{array}
$$

3) Accept any three of these answers:

$$
\begin{array}{ll}
x+1=4 & 4-x=1 \\
x+5=8 & 8-x=5 \\
x+2=5 & 5-x=2 \\
x-1=2 & x-2=1 \\
2 x+2=8 & 1-2 x=4 \\
2 x+4=10 & 8-2 x=2 \\
2(x+1)=8 & 2(x+2)=10 \\
2(x-1)=4 & 4(x-1)=8 \\
5(x-1)=10 &
\end{array}
$$

1) $x=6$ in both equations.

$$
\begin{aligned}
3(x+4) & =30 \\
x+4 & =30 \div 3 \\
x+4 & =10 \\
x & =10-4 \\
x & =6
\end{aligned}
$$

$3 x+4=22$
$3 x=22-4$
$3 x=18$
$x=18 \div 3$
$x=6$
2) a) Nishi is incorrect as the right-hand side of the balance would show $4 x=16$ and the expression she has written totals 17.
b) Accept any expressions totalling 16.
3) a) The ' $\div 7$ ' is correct as divide is the inverse of multiply. The ' -2 ' is incorrect as it should be the inverse, which is $'+2$ '. This means $x=8(6+2=8)$.
b) The missing inverse operations are ' \div by 8 ' and ' -3 '. This then gives the correct answer that $x=9$.

1) By subtracting 4 from both sides of the equation, children should identify that the equation becomes
? $x=30$, therefore the value of x can be all the factors of 30:
$15 x+4=34$ where $x=2$
$10 x+4=34$ where $x=3$
$6 x+4=34$ where $x=5$
$5 x+4=34$ where $x=6$
$3 x+4=34$ where $x=10$
$2 x+4=34$ where $x=15$
2) The children should investigate substituting prime numbers in for the value of x and then reasoning what would need to be added to three times that number to make a square number.

For example: If $x=11$, then $3 x+3=36$ or $3 x+16=49$
For example: If $x=13$, then $3 x+10=49$ or $3 x+25=64$
3) Using the given lengths of pencil A and B, we can find the value of x :
$5 x+4=34 \mathrm{~cm}$

$$
\begin{aligned}
5 x & =34-4 \\
5 x & =30 \mathrm{~cm} \\
x & =30 \div 5 \\
x & =6 \mathrm{~cm}
\end{aligned}
$$

Now that we know the value of x, we can find the length of pencil D :
$4 x+25=?$
$(4 \times 6)+25=49 \mathrm{~cm}$
Now that we know the length of pencils A, B and $D(34+34+49=117)$, we can subtract these from the total length of 139 cm to find the length of pencil C :
$139 \mathrm{~cm}-117 \mathrm{~cm}=22 \mathrm{~cm}$
Pencil C is 22 cm long.

