1) Class 5 are exploring different methods of multiplying mixed numbers.
a) Shade the bar models to represent $3 \frac{2}{3} \times 4$.

b) Complete Theo's repeated addition calculation, giving the answer in its simplest form.
$3 \frac{2}{3} \times 4=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad $=$ \qquad
c) Isha is using a different method. She has partitioned the whole and the fraction to multiply them separately. Complete her calculation, giving the answer in its simplest form.
$3 \times 4=$ \qquad

\square $+$ \qquad $=$ \square
d) Vicky converted the mixed number to an improper fraction to multiply. Show her calculation, giving the answer in its simplest form.
2) Now choose a method to answer each question.
a) $2 \frac{3}{5} \times 2=$
b) $4 \times 1 \frac{3}{4}=$
\qquad
3) Match the calculation to the correct answer.

4) Ted is making bubble mixture for his bubble machine. To make one portion, he mixes $2 \frac{1}{4}$ litres of water with $4 \frac{2}{3}$ tablespoons of washing-up liquid.

Ted makes one portion of bubble mixture for himself and one each for his three friends.
a) How much water will he need?
b) How many tablespoons of washing-up liquid will he need? \square
\square
2) Complete the statements using the symbols $<$, $>$ or $=$.
a) $2 \frac{3}{5} \times 3 \square 2 \frac{5}{10} \times 4$
b) $4 \frac{3}{4} \times 2$
 $3 \frac{5}{6} \times 3$
c) $2 \frac{3}{4} \times 4$ \square $5 \frac{1}{4} \times 2$

1) What could the value of the missing digits be? Find two possible solutions.

\square
2) On average, a shallower bath uses $72 \frac{3}{8}$ litres of water, whereas a deeper bath uses $80 \frac{3}{4}$ litres of water.

In one year, how much more water would always taking a deep bath use than always taking a shallow bath, if someone had 3 baths a week?

Show your working out.
\square
Taking a deep bath would use \qquad more litres of water than taking a shallow bath.
3) Write a problem that involves multiplying mixed numbers for your partner to solve.
\qquad
\qquad
\qquad

