1) a)

b) $\frac{1}{2} \times 3=\frac{3}{2}=1 \frac{1}{2} \quad 5 \times \frac{1}{8}=\frac{5}{8}$
$\frac{1}{6} \times 4=\frac{4}{6}=\frac{2}{3} \quad \frac{1}{7} \times 8=\frac{8}{7}=1 \frac{1}{7}$
2) a) $\frac{1}{4} \times 3=3 \times \frac{1}{4} \quad$ True $\frac{3}{4}=\frac{3}{4}$
b) $\frac{1}{4} \times 5<\frac{1}{5} \times 4 \quad$ False, the calculation should be $\frac{5}{5}=1 \frac{1}{4} \quad 1 \frac{1}{4}>\frac{4}{5}$
c) $\frac{1}{6} \times 5=\frac{1}{12} \times 10 \quad$ True $\frac{5}{6}=\frac{10}{12}=\frac{5}{6}$
d) $\frac{1}{5} \times 4>10 \times \frac{1}{10} \quad$ False, the calculation should be $\frac{4}{5}<\frac{10}{10}=1$ whole
3) $\frac{1}{4} \times 7=\frac{7}{4}=1 \frac{3}{4}$ packs of cheese
4) $\frac{1}{5} \times 6=1 \frac{1}{5}$
$\frac{1}{5} \times 7=1 \frac{2}{5}$
$\frac{1}{5} \times 8=1 \frac{3}{5}$
$\frac{1}{5} \times 9=1 \frac{4}{5}$
Children might choose to use their equivalent fractions knowledge, such as $\frac{1}{10} \times 12=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$
5) There are three possible solutions.
$\frac{1}{3} \times 4=\frac{4}{3}=1 \frac{1}{3}$
$\frac{1}{6} \times 8=\frac{8}{6}=1 \frac{2}{6}=1 \frac{1}{3}$
$\frac{1}{12} \times 16=\frac{16}{12}=1 \frac{4}{12}=1 \frac{1}{3}$
No, it is not possible to find a solution to this question when the denominator is larger than the integer you are multiplying by. In order to get an answer between I and 2, you need to create an improper fraction where the numerator is larger than the denominator. This only happens when the integer you are multiplying by is larger than the denominator.
